Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Front Immunol ; 13: 933347, 2022.
Article in English | MEDLINE | ID: covidwho-2311143

ABSTRACT

Intramuscularly administered vaccines stimulate robust serum neutralizing antibodies, yet they are often less competent in eliciting sustainable "sterilizing immunity" at the mucosal level. Our study uncovers a strong temporary neutralizing mucosal component of immunity, emanating from intramuscular administration of an mRNA vaccine. We show that saliva of BNT162b2 vaccinees contains temporary IgA targeting the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus-2 spike protein and demonstrate that these IgAs mediate neutralization. RBD-targeting IgAs were found to associate with the secretory component, indicating their bona fide transcytotic origin and their polymeric multivalent nature. The mechanistic understanding of the high neutralizing activity provided by mucosal IgA, acting at the first line of defense, will advance vaccination design and surveillance principles and may point to novel treatment approaches and new routes of vaccine administration and boosting.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , RNA, Messenger , Immunoglobulin A
2.
Pediatr Pulmonol ; 58(7): 2076-2084, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2300414

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has affected the incidence of respiratory viral infections. Our aim was to assess changes in pediatric admissions due to respiratory diseases and associated respiratory viral infections. METHODS: An observational study including all respiratory admissions to the pediatric departments from January 2015 to August 2021. We compared respiratory admission percentage, respiratory viral panel results and clinical characteristics of these admissions between two study periods, January 2015 to February 2020 (pre-COVID-19 era) and March 2020 to August 2021 (COVID-19 era). RESULTS: A total of 8774 respiratory admissions were included, 7157 pre-COVID-19 era and 1617 COVID-19 era. Relative to all pediatric admissions, there was a 17% decrease in respiratory admission percentage during the COVID-19 era (p < 0.001) and a 31% and 22% decreased in the admission percentages due to bronchiolitis (p < 0.001) and pneumonia (p < 0.001), respectively. However, admission percentages for asthma, wheezing illness, complicated pneumonia, and stridor remained the same. There was a significant decrease in the detection of a respiratory viral pathogen associated with these respiratory admissions (p < 0.001). This was related to a significant decrease in the detection of respiratory syncytial virus (RSV) (37% vs. 27%, p < 0.001) and influenza (5% vs. 0.3%, p < 0.001), but not other respiratory viruses. An alteration in the circulation pattern of most respiratory viruses, was observed. CONCLUSIONS: During the COVID-19 pandemic, a decrease in the prevalence of RSV and influenza was associated with a significant decrease in admissions for bronchiolitis and pediatric pneumonia. This may allow us to estimate the significance of preventive measures for RSV and influenza on pediatric respiratory admissions.


Subject(s)
Bronchiolitis , COVID-19 , Influenza, Human , Pneumonia , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Humans , Infant , Influenza, Human/epidemiology , COVID-19/epidemiology , COVID-19/complications , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/diagnosis , Pandemics , Bronchiolitis/epidemiology , Pneumonia/epidemiology , Respiratory Tract Infections/complications
3.
Pediatr Emerg Care ; 2023 Apr 11.
Article in English | MEDLINE | ID: covidwho-2292142

ABSTRACT

OBJECTIVES: There are scant data on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in infants younger than 90 days. This study was designed to characterize COVID-19 presentation and clinical course in this age group and evaluate the risk of serious bacterial infection. METHODS: Data on all SARS-CoV-2-polymerase chain reaction-positive infants presenting to the pediatric emergency department (PED) were retrospectively collected, followed by a case-control study comparing those infants presenting with fever (COVID group) to febrile infants presenting to the PED and found to be SARS-CoV-2 negative (control group). RESULTS: Of the 96 PCR-positive SARS-CoV-2 infants who met the inclusion criteria, the most common presenting symptom was fever (74/96, 77.1%) followed by upper respiratory tract infection symptoms (42/96, 43.8%). Four (4.2%) presented with symptoms consistent with brief resolved unexplained event (4.2%).Among the febrile infants, the presenting symptoms and vital signs were similar in the COVID and control groups, with the exception of irritability, which was more common in the control group (8% and 26%; P < 0.01). The SARS-CoV-2-positive infants had decreased inflammatory markers including: C-reactive protein (0.6 ± 1 mg/dL vs 2.1 ± 2.7 mg/dL; P < 0.0001), white blood cell count (9.3 ± 3.4 × 109/L vs 11.8 ± 5.1 × 109/L; P < 0.001), and absolute neutrophils count (3.4 ± 2.4 × 109/L vs 5.1 ± 3.7 × 109/L; P < 0.001). The rate of invasive bacterial infection was similar between groups (1.4% and 0%; P = 0.31). No mortality was recorded. Although not significantly different, urinary tract infections were less common in the COVID group (7% and 16%; P = 0.07). CONCLUSIONS: The SARS-CoV-2 infection in infants aged 0 to 90 days who present to the PED seems to be mostly mild and self-limiting, with no increased risk of serious bacterial infection.

4.
Clin Infect Dis ; 2022 Jun 19.
Article in English | MEDLINE | ID: covidwho-2235027

ABSTRACT

BACKGROUND: SARS-CoV-2 infection during early infancy can result in severe disease. We evaluated the durability of maternally-derived anti-SARS-CoV-2 antibodies in infants and its relation to antenatal vaccination timing. METHODS: Sera were prospectively collected at birth and 3 months after delivery from mother-infant pairs following antenatal BNT162b2 vaccination. SARS-CoV-2 receptor binding domain (RBD)-specific IgG levels and neutralizing activity were evaluated. RESULTS: 56 mother-infant pairs were included: 15 (26.8%) were vaccinated in the 1st trimester, 16 (28.6%) in the 2nd trimester, and 25 (44.6%) in the 3rd trimester.At the time of delivery, all neonates were positive for anti-RBD-specific IgG with a median concentration of 4046 [IQR 2446-7896] AU/mL, with the highest concentration found after 3rd trimester vaccination (median 6763 [IQR 3857-12561] AU/mL). At 3 months after delivery, anti RBD-specific IgG levels in infants significantly waned with a median concentration of 545 [IQR 344-810] AU/mL (P < 0.001). The half-life of anti-RBD-specific IgG was 66 days among mothers and 30 days among infants. While at the time of delivery, all neonates had detectable neutralizing activity regardless of gestational age at vaccination, at 3-months of age, a higher proportion of infants born to mothers vaccinated in 3rd trimester had persistent neutralizing activity as compared to those born to mothers vaccinated in 2nd trimester. CONCLUSIONS: Maternal vaccination leads to efficient transplacental antibody transfer, with persistent anti-SARS-CoV-2 antibodies detected at 3 months of age in all infants. The observed effect of antenatal immunization timing on the kinetics of maternally-derived antibodies may have implications for SARS-CoV-2 vaccination strategies.

5.
JCI Insight ; 8(1)2023 01 10.
Article in English | MEDLINE | ID: covidwho-2194475

ABSTRACT

BACKGROUND: To minimize COVID-19 pandemic burden and spread, 3-dose vaccination campaigns commenced worldwide. Since patients who are pregnant are at increased risk for severe disease, they were recently included in that policy, despite the lack of available evidence regarding the impact of a third boosting dose during pregnancy, underscoring the urgent need for relevant data. We aimed to characterize the effect of the third boosting dose of mRNA Pfizer BNT162b2 vaccine in pregnancy. METHODS: We performed a prospective cohort study of anti-SARS-CoV-2 antibody titers (n = 213) upon delivery in maternal and cord blood of naive fully vaccinated parturients who received a third dose (n = 86) as compared with 2-dose recipients (n = 127). RESULTS: We found a robust surge in maternal and cord blood levels of anti-SARS-CoV-2 titers at the time of delivery, when comparing pregnancies in which the mother received a third boosting dose with 2-dose recipients. The effect of the third boosting dose remained significant when controlling for the trimester of last exposure, suggesting additive immunity extends beyond that obtained after the second dose. Milder side effects were reported following the third dose, as compared with the second vaccine dose, among the fully vaccinated group. CONCLUSION: The third boosting dose of mRNA Pfizer BNT162b2 vaccine augmented maternal and neonatal immunity with mild side effects. These data provide evidence to bolster clinical and public health guidance, reassure patients, and increase vaccine uptake among patients who are pregnant. FUNDING: Israel Science Foundation KillCorona grant 3777/19; Research grant from the "Ofek" Program of the Hadassah Medical Center.


Subject(s)
COVID-19 , SARS-CoV-2 , Infant, Newborn , Female , Pregnancy , Humans , COVID-19/prevention & control , BNT162 Vaccine , Immunity, Humoral , Pandemics , Prospective Studies , Mothers , RNA, Messenger
6.
Microorganisms ; 11(1)2023 Jan 09.
Article in English | MEDLINE | ID: covidwho-2200529

ABSTRACT

BACKGROUND: previous worldwide reports indicated a substantial short-term reduction in various respiratory infections during the early phase of the SARS-CoV-2 pandemic. AIMS: exploring the long-term impact of the COVID-19 pandemic on respiratory pathogens. METHODS: retrospective analysis of bacterial and viral positivity rate in respiratory samples, between 1 January 2017-30 June 2022 in a tertiary hospital in Jerusalem, Israel. RESULTS: A decline in overall respiratory tests and positivity rate was observed in the first months of the pandemic. Respiratory isolations of Hemophilus influenza and Streptococcus pneumoniae were insignificantly affected and returned to their monthly average by November 2020, despite a parallel surge in COVID-19 activity, while Mycoplasma pneumoniae was almost eliminated from the respiratory pathogens scene. Each viral pathogen acted differently, with adenovirus affected only for few months. Human-metapneumovirus and respiratory-syncytial-virus had reduced activity for approximately a year, and influenza A virus resurged in November 2021 with the elimination of Influenza-B. CONCLUSIONS: After an immediate decline in non-SARS-CoV-2 respiratory infections, each pathogen has a different pattern during a 2-year follow-up. These patterns might be influenced by intrinsic factors of each pathogen and different risk reduction behaviors of the population. Since some of these measures will remain in the following years, we cannot predict the timing of return to pre-COVID-19 normalcy.

7.
Clin Infect Dis ; 75(1): e603-e610, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-2017834

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) during pregnancy and early infancy can result in severe disease. Evaluating the effect of gestational age at the time of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination on maternal antibody levels and transplacental antibody transfer has important implications for maternal care and vaccination strategies. METHODS: Maternal and cord blood sera were collected from mother-newborn dyads (n = 402), following term delivery after antenatal 2-dose SARS-CoV-2 BNT162b2 mRNA vaccination. SARS-CoV-2 spike protein (S) and receptor binding domain (RBD)-specific IgG levels were evaluated in the samples collected. RESULTS: Median anti-S and anti-RBD-specific IgG levels in maternal sera at the time of delivery were lowest following first-trimester vaccination (n = 90; anti-S IgG: 76 AU/mL; anti-RBD-specific IgG: 478 AU/mL), intermediate in those vaccinated in the second trimester (n = 124; anti-S IgG: 126 AU/mL; anti-RBD-specific IgG: 1263 AU/mL), and highest after third-trimester vaccination (n = 188; anti-S IgG: 240 AU/mL; anti-RBD-specific IgG: 5855 AU/mL). Antibody levels in neonatal sera followed a similar pattern and were lowest following antenatal vaccination in the first trimester (anti-S IgG: 126 AU/mL; anti-RBD-specific IgG: 1140 AU/mL). In a subgroup of parturients vaccinated in the first trimester (n = 30), a third booster dose was associated with significantly higher maternal and neonatal antibody levels. CONCLUSIONS: These results suggest a considerable antibody waning throughout pregnancy in those vaccinated at early gestation. The observed boosting effect of a third vaccine dose hints at its potential benefit in those who completed the 2-dose vaccine series at early pregnancy or before conception. The impact of antenatal immunization timing on SARS-CoV-2 transplacental antibody transfer may influence neonatal seroprotection.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Female , Gestational Age , Humans , Immunoglobulin G , Infant, Newborn , Pregnancy , Pregnancy Complications, Infectious/prevention & control , RNA, Messenger , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
8.
iScience ; 25(9): 104935, 2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-1983264

ABSTRACT

The global pandemic caused by SARS-CoV-2 is a major public health problem. Virus entry occurs via binding to ACE2. Five SARS-CoV-2 variants of concern (VOCs) were reported so far, all having immune escape characteristics. Infection with the current VOC Omicron was noticed in immunized and recovered individuals; therefore, the development of new treatments against VOC infections is urgently needed. Most approved mAbs treatments against SARS-CoV-2 are directed against the spike protein of the original virus and are therefore inefficient against Omicron. Here, we report on the generation of hACE2.16, an anti-ACE2 antibody that recognizes and blocks ACE2-RBD binding without affecting ACE2 enzymatic activity. We demonstrate that hACE2.16 binding to ACE2 does not affect its surface expression and that hACE2.16 blocks infection and virus production of various VOCs including Omicron BA.1 and BA.2. hACE2.16 might, therefore, be an efficient treatment against all VOCs, the current and probably also future ones.

9.
Am J Obstet Gynecol ; 227(3): 486.e1-486.e10, 2022 09.
Article in English | MEDLINE | ID: covidwho-1959260

ABSTRACT

BACKGROUND: Post-COVID-19 vaccine boosting is a potent tool in the ongoing pandemic. Relevant data regarding this approach during pregnancy are lacking, which affects vaccination policy guidance, public acceptance, and vaccine uptake during pregnancy. We aimed to investigate the dynamics of anti-SARS-CoV-2 antibody levels following SARS-CoV-2 infection during pregnancy and to characterize the effect of a single postinfection vaccine booster dose on the anti-SARS-CoV-2 antibody levels in parturients in comparison with the levels in naïve vaccinated and convalescent, nonboosted parturients. STUDY DESIGN: Serum samples prospectively collected from parturients and umbilical cords at delivery at our university-affiliated urban medical center in Jerusalem, Israel, from May to October 2021, were selected and analyzed in a case-control manner. Study groups comprised the following participants: a consecutive sample of parturients with a polymerase chain reaction-confirmed history of COVID-19 during any stage of pregnancy; and comparison groups selected according to time of exposure comprising (1) convalescent, nonboosted parturients with polymerase chain reaction-confirmed COVID-19; (2) convalescent parturients with polymerase chain reaction-confirmed COVID-19 who received a single booster dose of the BNT162b2 messenger RNA vaccine; and (3) infection-naïve, fully vaccinated parturients who received 2 doses of the BNT162b2 messenger RNA vaccine. Outcomes that were determined included maternal and umbilical cord blood anti-SARS-CoV-2 antibody levels detected at delivery, the reported side effects, and pregnancy outcomes. RESULTS: A total of 228 parturients aged 18 to 45 years were included. Of those, samples from 64 were studied to characterize the titer dynamics following COVID-19 at all stages of pregnancy. The boosting effect was determined by comparing (1) convalescent (n=54), (2) boosted convalescent (n=60), and (3) naïve, fully vaccinated (n=114) parturients. Anti-SARS-CoV-2 antibody levels detected on delivery showed a gradual and significant decline over time from infection to delivery (r=0.4371; P=.0003). Of the gravidae infected during the first trimester, 34.6% (9/26) tested negative at delivery, compared with 9.1% (3/33) of those infected during the second trimester (P=.023). Significantly higher anti-SARS-CoV-2 antibody levels were observed among boosted convalescent than among nonboosted convalescent (17.6-fold; P<.001) and naïve vaccinated parturients (3.2-fold; P<.001). Similar patterns were observed in umbilical cord blood. Side effects in convalescent gravidae resembled those in previous reports of mild symptoms following COVID-19 vaccination during pregnancy. CONCLUSION: Postinfection maternal humoral immunity wanes during pregnancy, leading to low or undetectable protective titers for a marked proportion of patients. A single boosting dose of the BNT162b2 messenger RNA vaccine induced a robust increase in protective titers for both the mother and newborn with moderate reported side effects.


Subject(s)
COVID-19 Vaccines , COVID-19 , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunity, Humoral , Infant, Newborn , RNA, Messenger , SARS-CoV-2 , Vaccines, Synthetic , Viral Vaccines/adverse effects , mRNA Vaccines
10.
Viruses ; 14(7)2022 07 21.
Article in English | MEDLINE | ID: covidwho-1957450

ABSTRACT

SARS-CoV-2 Omicron variant has been characterized by decreased clinical severity, raising the question of whether early variant-specific interactions within the mucosal surfaces of the respiratory tract could mediate its attenuated pathogenicity. Here, we employed ex vivo infection of native human nasal and lung tissues to investigate the local-mucosal susceptibility and innate immune response to Omicron compared to Delta and earlier SARS-CoV-2 variants of concern (VOC). We show that the replication of Omicron in lung tissues is highly restricted compared to other VOC, whereas it remains relatively unchanged in nasal tissues. Mechanistically, Omicron induced a much stronger antiviral interferon response in infected tissues compared to Delta and earlier VOC-a difference, which was most striking in the lung tissues, where the innate immune response to all other SARS-CoV-2 VOC was blunted. Notably, blocking the innate immune signaling restored Omicron replication in the lung tissues. Our data provide new insights to the reduced lung involvement and clinical severity of Omicron.


Subject(s)
COVID-19 , Interferons , Lung , COVID-19/immunology , Humans , Interferons/immunology , Lung/immunology , Lung/virology , SARS-CoV-2/physiology , Virus Replication
11.
Clin Infect Dis ; 75(11): 2023-2026, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-1927309

ABSTRACT

We evaluated the neutralization efficiency against SARS-CoV-2 Omicron variant in maternal and cord blood sera after antenatal BNT162b2 vaccination. Neutralizing antibodies against Omicron were lacking at the time of delivery after 2-dose vaccination. A third booster dose was essential in building neutralizing antibody capacity against Omicron among mothers and neonates.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Pregnancy , Infant, Newborn , Female , Humans , SARS-CoV-2/genetics , RNA, Messenger , BNT162 Vaccine , COVID-19/prevention & control , Vaccination , Antibodies, Neutralizing , Mothers , Antibodies, Viral , Pregnancy Complications, Infectious/prevention & control
12.
Microbiol Spectr ; 10(4): e0073622, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1909609

ABSTRACT

COVID-19 is caused by SARS-CoV-2, several virulent variants of which have emerged since 2019. More than 529 million people have been infected, and at least 6 million have died. Our aim was to develop a fast, accurate, low-cost method for detecting and identifying newly emerging variants of concern (VOCs) that could pose a global threat. The 341-bp DNA sequence of a specific region of the SARS-CoV-2's spike protein was amplified by a one-step PCR on RNA samples from 46 patients. The product was sequenced using next-generation sequencing (NGS). DNA sequences from seven genomes, the original Wuhan isolate and six different representative variants obtained from the GISAID website, were used as references. Complete whole-genome sequences from local isolates were also obtained from the GISAID website, and their RNA was used for comparison. We used an amplicon-based NGS method (termed VOC-NGS) for genotyping and successfully identified all 46 samples. Fifteen (32.6%) were like the original isolate. Twenty-seven were VOCs: nine (19.5%) Alpha, eight (19%) Delta, six (14%) Beta, and four (8.7%) Omicron. Two were variants of interest (VOI): one (2%) Kappa and one (2%) Zeta. Two samples were mixtures of two variants, one of Alpha and Beta and one of Alpha and Delta. The Spearman correlation between whole-genome sequencing (WGS) and VOC-NGS was significant (P < 0.001) with perfect agreement (Kappa = 0.916) for 36/38 (94.7%) samples with VOC-NGS detecting all the known VOCs. Genotyping by VOC-NGS enables rapid screening of high-throughput clinical samples that includes the identification of VOCs and mixtures of variants, at lower cost than WGS. IMPORTANCE The manuscript described SARS-Cov-2 genotyping by VOC-NGS, which presents an ideal balance of accuracy, rapidity, and cost for detecting and globally tracking VOCs and some VOI of SARS-CoV-2. A large number of clinical samples can be tested together. Rapid introduction of new mutations at a specific site of the spike protein necessitates efficient strain detection and identification to enable choice of treatment and the application of vaccination, as well as planning public health policy.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , High-Throughput Nucleotide Sequencing , Humans , Mutation , RNA , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
13.
Med (N Y) ; 3(7): 468-480.e5, 2022 07 08.
Article in English | MEDLINE | ID: covidwho-1851770

ABSTRACT

BACKGROUND: Much remains unknown regarding the response of the immune system to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination. METHODS: We employed circulating cell-free DNA (cfDNA) to assess the turnover of specific immune cell types following administration of the Pfizer/BioNTech vaccine. FINDINGS: The levels of B cell cfDNA after the primary dose correlated with development of neutralizing antibodies and memory B cells after the booster, revealing a link between early B cell turnover-potentially reflecting affinity maturation-and later development of effective humoral response. We also observed co-elevation of B cell, T cell, and monocyte cfDNA after the booster, underscoring the involvement of innate immune cell turnover in the development of humoral and cellular adaptive immunity. Actual cell counts remained largely stable following vaccination, other than a previously demonstrated temporary reduction in neutrophil and lymphocyte counts. CONCLUSIONS: Immune cfDNA dynamics reveal the crucial role of the primary SARS-CoV-2 vaccine in shaping responses of the immune system following the booster vaccine. FUNDING: This work was supported by a generous gift from Shlomo Kramer. Supported by grants from Human Islet Research Network (HIRN UC4DK116274 and UC4DK104216 to R.S. and Y.D.), Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, The Alex U Soyka Pancreatic Cancer Fund, The Israel Science Foundation, the Waldholtz/Pakula family, the Robert M. and Marilyn Sternberg Family Charitable Foundation, the Helmsley Charitable Trust, Grail, and the DON Foundation (to Y.D.). Y.D. holds the Walter and Greta Stiel Chair and Research Grant in Heart Studies. I.F.-F. received a fellowship from the Glassman Hebrew University Diabetes Center.


Subject(s)
BNT162 Vaccine , COVID-19 , Cell-Free Nucleic Acids , SARS-CoV-2 , Adult , Aged , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/immunology , Female , Humans , Immunization, Secondary , Male , Memory B Cells/immunology , Memory B Cells/metabolism , Middle Aged , SARS-CoV-2/immunology , Young Adult
14.
Ann Neurol ; 91(6): 796-800, 2022 06.
Article in English | MEDLINE | ID: covidwho-1763182

ABSTRACT

The introduction of a third-dose vaccination along with new variants of concern raises questions regarding serology and T-cell responses in patients with multiple sclerosis (pwMS) treated with B-cell depletion who develop attenuated humoral response to vaccines. The aim of this study was to longitudinally evaluate humoral and cellular response to SARS-CoV-2 mRNA vaccine in ocrelizumab-treated pwMS before and following a third vaccine dose. Following the third vaccine dose, patients who are low or nonresponders following initial vaccination did not increase antibody titers. In healthy controls and ocrelizumab-treated pwMS, cellular response decreased 6 months after initial vaccination and increased significantly after the third dose. ANN NEUROL 2022;91:796-800.


Subject(s)
COVID-19 , Multiple Sclerosis , Antibodies, Monoclonal, Humanized , Antibodies, Viral , COVID-19 Vaccines/therapeutic use , Humans , Immunity , Multiple Sclerosis/drug therapy , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
15.
Elife ; 112022 03 15.
Article in English | MEDLINE | ID: covidwho-1742932

ABSTRACT

Preexisting antibodies to endemic coronaviruses (CoV) that cross-react with SARS-CoV-2 have the potential to influence the antibody response to COVID-19 vaccination and infection for better or worse. In this observational study of mucosal and systemic humoral immunity in acutely infected, convalescent, and vaccinated subjects, we tested for cross-reactivity against endemic CoV spike (S) protein at subdomain resolution. Elevated responses, particularly to the ß-CoV OC43, were observed in all natural infection cohorts tested and were correlated with the response to SARS-CoV-2. The kinetics of this response and isotypes involved suggest that infection boosts preexisting antibody lineages raised against prior endemic CoV exposure that cross-react. While further research is needed to discern whether this recalled response is desirable or detrimental, the boosted antibodies principally targeted the better-conserved S2 subdomain of the viral spike and were not associated with neutralization activity. In contrast, vaccination with a stabilized spike mRNA vaccine did not robustly boost cross-reactive antibodies, suggesting differing antigenicity and immunogenicity. In sum, this study provides evidence that antibodies targeting endemic CoV are robustly boosted in response to SARS-CoV-2 infection but not to vaccination with stabilized S, and that depending on conformation or other factors, the S2 subdomain of the spike protein triggers a rapidly recalled, IgG-dominated response that lacks neutralization activity.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Cross Reactions/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibody Specificity/immunology , Host-Pathogen Interactions/immunology , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Neutralization Tests , Vaccination
17.
J Nephrol ; 35(1): 153-164, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1603821

ABSTRACT

BACKGROUND: Determining the humoral immunogenicity of tozinameran (BNT162b2) in patients requiring chronic renal replacement therapy, and its impact on COVID-19 morbidity several months after vaccination, may guide risk assessment and changes in vaccination policy. METHODS: In a prospective post-vaccination cohort study with up to 5 months follow-up we studied outpatient dialysis and kidney transplant patients and respective healthcare teams. Outcomes were anti S1/S2 antibody responses to vaccine or infection, and infection rate during follow-up. RESULTS: One hundred seventy-five dialysis patients (40% women, 65 ± 15 years), 252 kidney transplant patients (33% women, 54 ± 14 years) and 71 controls (65% women, 44 ± 14 years) were followed. Three months or longer after vaccination we detected anti S1/S2 IgG antibodies in 79% of dialysis patients, 42% of transplant recipients and 100% of controls, whereas respective rates after infection were 94%, 69% and 100%. Predictors of non-response were older age, diabetes, history of cancer, lower lymphocyte count and lower vitamin-D levels. Factors associated with lower antibody levels in dialysis patients were modality (hemodialysis vs peritoneal) and high serum ferritin levels. In transplant patients, hypertension and higher calcineurin or mTOR inhibitor drug levels were linked with lower antibody response. Vaccination was associated with fewer subsequent infections (HR 0.23, p < 0.05). Moreover, higher antibody levels (particularly above 59 AU/ml) were associated with fewer events, with a HR 0.41 for each unit increased in log10titer (p < 0.05). CONCLUSIONS: Dialysis patients, and more strikingly kidney transplant recipients, mounted reduced antibody response to COVID-19 mRNA vaccination. Lesser humoral response was associated with more infections. Measures to identify and protect non-responsive patients are required.


Subject(s)
COVID-19 , Kidney Transplantation , Aged , BNT162 Vaccine , Cohort Studies , Female , Follow-Up Studies , Humans , Male , Prospective Studies , RNA, Messenger , Renal Dialysis , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
18.
PLoS Pathog ; 17(12): e1010175, 2021 12.
Article in English | MEDLINE | ID: covidwho-1592244

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Currently, as dangerous mutations emerge, there is an increased demand for specific treatments for SARS-CoV-2 infected patients. The spike glycoprotein on the virus envelope binds to the angiotensin converting enzyme 2 (ACE2) on host cells through its receptor binding domain (RBD) to mediate virus entry. Thus, blocking this interaction may inhibit viral entry and consequently stop infection. Here, we generated fusion proteins composed of the extracellular portions of ACE2 and RBD fused to the Fc portion of human IgG1 (ACE2-Ig and RBD-Ig, respectively). We demonstrate that ACE2-Ig is enzymatically active and that it can be recognized by the SARS-CoV-2 RBD, independently of its enzymatic activity. We further show that RBD-Ig efficiently inhibits in-vivo SARS-CoV-2 infection better than ACE2-Ig. Mechanistically, we show that anti-spike antibody generation, ACE2 enzymatic activity, and ACE2 surface expression were not affected by RBD-Ig. Finally, we show that RBD-Ig is more efficient than ACE2-Ig at neutralizing high virus titers. We thus propose that RBD-Ig physically blocks virus infection by binding to ACE2 and that RBD-Ig should be used for the treatment of SARS-CoV-2-infected patients.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/metabolism , Protein Domains , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding Sites , Binding Sites, Antibody , COVID-19/prevention & control , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Immunoglobulin Fc Fragments/therapeutic use , Immunoglobulin G/therapeutic use , Mice, Transgenic , Neutralization Tests , Protein Binding , Recombinant Fusion Proteins/therapeutic use , SARS-CoV-2/drug effects , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL